skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rich, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High performance computing (HPC) is undergoing significant changes. The emerging HPC applications comprise both compute- and data-intensive applications. To meet the intense I/O demand from emerging data-intensive applications, burst buffers are deployed in production systems. Existing HPC schedulers are mainly CPU-centric. The extreme heterogeneity of hardware devices, combined with workload changes, forces the schedulers to consider multiple resources (e.g., burst buffers) beyond CPUs, in decision making. In this study, we present a multi-resource scheduling scheme named BBSched that schedules user jobs based on not only their CPU requirements, but also other schedulable resources such as burst buffer. BBSched formulates the scheduling problem into a multi-objective optimization (MOO) problem and rapidly solves the problem using a multi-objective genetic algorithm. The multiple solutions generated by BBSched enables system managers to explore potential tradeoffs among various resources, and therefore obtains better utilization of all the resources. The trace-driven simulations with real system workloads demonstrate that BBSched improves scheduling performance by up to 41% compared to existing methods, indicating that explicitly optimizing multiple resources beyond CPUs is essential for HPC scheduling. 
    more » « less